
How Shall We Program Very
Large Machines?

Rusty Lusk

Mathematics and Computer Science Division

Argonne National Laboratory

FRIB Workshop, ANL, March 2010

Argonne National
Laboratory

Outline of the Situation

•! Million core systems and beyond are on the horizon

•! Today labs and universities have general purpose
systems with 10k-200K cores (BGL@ LLNL 200K,

BGP@Argonne 160K, XT5@ORNL 150K cores)

•! By 2012 there will be more systems deployed in the

200K-1M core range

•! By 2020 there will be systems with perhaps 100M cores

•! Personal systems with > 1000 cores within 5

•! Personal systems with requirement for 1M threads is not

too far fetched (GPUs for example)

Argonne National
Laboratory

Looking out to Exascale…
Concurrency will be Doubling every 18 months

Argonne National
Laboratory

Traditional Sources of Performance
Improvement are Flat-Lining (2004)

•! New Constraints

–! 15 years of exponential clock

rate growth has ended

•! Moore’s Law reinterpreted:

–! How do we use all of

those transistors to keep

performance increasing

at historical rates?

–! Industry Response:

#cores per chip doubles

every 18 months instead

of clock frequency!

!"#$%&'()$%*&+,')-'.$/0&'10$2)*$/3'45/(&'

6577)/83'6&%9':$;&%3'5/8'<$%*)/':7"*='

Argonne National
Laboratory

Multicore comes in a wide variety

–!Multiple parallel general-purpose processors (GPPs)

–!Multiple application-specific processors (ASPs)

“The Processor is the
new

Transistor” [Rowen]

Intel 4004 (1971):
4-bit processor,

2312 transistors,
~100 KIPS,

10 micron PMOS,
11 mm2 chip

Sun Niagara
8 GPP cores (32 threads)

Intel®

XScale

™

 Core
32K IC

32K DC

MEv2

10

MEv2

11

MEv2

12

MEv2

15

MEv2

14

MEv2

13

Rbuf

64 @

128B

Tbuf

64 @

128B

Hash

48/64/1

28
Scratch

16KB
QDR

SRAM

2

QDR

SRAM

1

RDRAM

1

RDRAM

3

RDRAM

2

G

A

S
K

E

T

PCI

(64b)

66

MHz

S

P

I
4

or

C

S

I
X

Stripe

E/D Q E/D Q

QDR

SRAM

3
E/D Q

MEv2

9

MEv2

16

MEv2

2

MEv2

3

MEv2

4

MEv2

7

MEv2

6

MEv2

5

MEv2

1

MEv2

8

CSRs

-Fast_wr
 -UART -Timers

-GPIO

-BootROM/
SlowPort

QDR

SRAM

4
E/D Q

Intel Network Processor
1 GPP Core

16 ASPs (128 threads)

IBM Cell
1 GPP (2 threads)

8 ASPs

Picochip DSP
1 GPP core
248 ASPs

Cisco CRS-1
188 Tensilica GPPs

Argonne National
Laboratory

What’s Next?

Source: Jack Dongarra, ISC 2008

and this is just for the individual nodes

Argonne National
Laboratory

How Will We Program Them?

!!Still an unsolved problem

–! Many approaches being explored

•! especially for GPUs

!!Some believe a totally new programming model and

language will be needed.

!!Some mechanism for dealing with shared memory will be

necessary

–! This (whatever it is) plus MPI is the conservative view

!!Whatever it is, it will need to interact properly with MPI

!!May also need to deal with on-node heterogeneity

!!The situation is somewhat like message-passing before
MPI

–! And it is too early to standardize

Argonne National
Laboratory 8

MPI is Current HPC Programming Model

!!MPI represents a very complete definition of a well-defined

programming model

!!MPI programs are portable

!! Both C and Fortran (-90) bindings

!! There are many implementations

–! Vendors

–! Open source

!! Enables high performance for wide class of architectures

–! Scalable algorithms are key

!! Small subset easy to learn and use

!! Expert MPI programmers needed most for libraries, which are

encouraged by the MPI design.

Argonne National
Laboratory 9

The MPI Forum Continues to Refresh MPI

!! New signatures for old functions

–! E.g. MPI_Send(…,MPI_Count,…)

!! Details

–! Fortran binding issues..

!! New features

–! MPI_Process_Group and related functions for fault tolerance

–! New topology routines aware of more hierarchy levels

–! Non-blocking collective operations

–! A simpler one-sided communication interface

•!Or perhaps standardized semantics for interacting with shared-

memory programming systems in general

–! More scalable versions of the “v” collectives

–! MPI part of MPI+X independently of X

!! See http://www.mpi-forum.org for details of working groups

Argonne National
Laboratory 10

Why Won’t “MPI Everywhere” suffice?

!! Core count on a node is increasing faster than memory size.

!! Thus memory available per MPI process is going down.

!! Thus we need parallelism within an address space, while continuing

to use MPI for parallelism among separate address spaces.

!!We don’t have a good way to do this yet.

!!Whatever we use, it must cooperate with parallelism across address

spaces, so its API must interact in a well-defined way with MPI.

!! Some applications are expressing the need for large address spaces

that span multiple multi-core nodes, yet still are each a small part of

the memory of the entire machine.

Argonne National
Laboratory 11

Moving Beyond MPI

!! Any alternative to MPI (at its own level) will have to have some of the

good properties of MPI

–! Portability

–! Scalability

–! Performance

!! Perhaps alternatives exist at different levels.

!! But they will still have to interact with MPI, in order to provide a path

from where we are now to more abstract models

–! Clear interoperability semantics

–! Can be used either above or below C/Fortran/MPI code

Argonne National
Laboratory 12

Some Families of Programming
Models and Associated Languages

!! Shared-memory and annotation languages

–! Especially OpenMP

–! Likely to coexist with MPI

–! OpenMP 3.0 (task parallelism)

–! Beyond 3.0 (locality-aware programming)

!! Partitioned Global Address Space Languages

–! UPC, Co-Array Fortran, and Titanium

–! One step removed from MPI

!! The HPCS languages

–! X10, Chapel, Fortress

–! Two steps removed from MPI

Argonne National
Laboratory 13

OpenMP

!!OpenMP is a set of compiler directives (in comments, like HPF) plus

some library calls

!! The comments direct the execution of loops in parallel in a

convenient way.

!! Data placement is not controlled, so performance is hard to get

except on machines with real shared memory (maybe being

addressed).

!! Likely to be more successful on multicore chips than on previous

SMP’s (multicore = really, really shared memory).

!! Can co-exist with MPI

–! MPI’s levels of thread safety correspond to programming

constructs in OpenMP

•!Formal methods can be applied to hybrid programs

!! New book by Barbara Chapman, et al.

Argonne National
Laboratory 14

Other Annotation-based approaches

!! The idea is to retain the sequential programming model

!! Annotations guide source-to-source transformations or compilation

into a parallel program

!! HPF and OpenMP (part 1) are examples

!!Others in research mode

Argonne National
Laboratory 15

The PGAS Languages

!! PGAS (Partitioned Global Address Space) languages attempt to

combine the convenience of the global view of data with awareness

of data locality, for performance

–! Co-Array Fortran, an extension to Fortran-90)

–! UPC (Unified Parallel C), an extension to C

–! Titanium, a parallel version of Java

!! Fixed number of processes, like MPI-1

Global address
 space

Local address
spaces

Argonne National
Laboratory 16

PGAS Languages Status

!!Compilers exist

–! In some cases more than one

!!Applications are being tried

!!Substantial support, at least for UPC

!!Early experiments are encouraging with respect to

performance

–! Some reports are misleading.

!!Little take-up by scientific applications so far

Argonne National
Laboratory 17

The DARPA HPCS Language Project

!! The DARPA High Productivity Computer Systems (HPCS) Project is

a 10-year, three-phase, hardware/software effort to transform the

productivity aspect of the HPC enterprise.

!! In Phase II,three vendors were funded to develop high productivity

language systems, and each assigned a small group to language

development

–! IBM: X10

–! Cray: Chapel

–! Sun: Fortress

!! In Phase III, Sun was dropped from DARPA support. Both IBM and

Cray efforts are continuing. Actually, Sun’s effort is too, internally

supported.

!! Two steps removed from MPI: not a fixed number of processes

Argonne National
Laboratory

Quasi Mainstream
Programming Models

•! C, Fortran, C++ and MPI

•! OpenMP, pthreads

•! (CUDA, RapidMind, Cn) " OpenCL

•! PGAS (UPC, CAF, Titanium)

•! HPCS Languages (Chapel, Fortress, X10)

•! HPC Research Languages and Runtime

•! HLL (Parallel Matlab, Grid Mathematica, etc.)

Argonne National
Laboratory 19

Hybrid Programming Models

!! Some shared-memory API’s that can be used with MPI

–! POSIX threads -- explicit thread creation, locks, condition vars

–! OpenMP

•!Sequential programming model with annotations, parallel

execution model

–! Yet to be invented…

!! The current situation: OpenMP + MPI

–! Works because of well-thought-out explicit contracts between the

models.

•!MPI standard defines levels of thread safety

•!OpenMP defines types of code regions

•!These work together in ways defined by the respective

standards

–! Hard to get performance with OpenMP because of lack of locality

management, excessive synchronization.

Argonne National
Laboratory

Hybrid On-Node

!! Non-homogeneous multi-core

!! APIs: CUDA (Nvidia), OpenCL

!! Data must be moved from main memory to GPU memory (bandwidth

issue)

!! Define data-parallel functions on data in GPU memory

!! Collection of results back to main memory

20

Argonne National
Laboratory 21

One Possible Near Future: PGAS+MPI

!! Locality management within an address space via local, remote

memory

!! An address space could be bigger than one node

–! Might need more hierarchy in PGAS definitions

!! Just starting to work with PGAS folks on UPC+MPI and CAF+MPI

–! Center for Programming Models base program project with ANL,

LBNL, Rice, Houston, PNNL, OSU

!! Until recently PGAS has focused either on competing with MPI or

with OpenMP on single node

–! Need to make interoperability with MPI a priority to attract current

HPC applications

Argonne National
Laboratory 22

A More Distant Future

!! HPCS-type languages have many interesting ideas for exploiting

less obvious parallelism

!! Need coordination and freedom from vendor ownership

!! A convergence plan

–! (DARPA briefly funded a convergence project, which was

promising until cancelled)

!! A migration plan for current applications

–! Interaction with MPI

–! Use in libraries

!! Both Chapel and X10 highly visible in HPC Challenge at SC ’09

–! Benchmarks, not full applications

Argonne National
Laboratory

Libraries

!! Libraries are an easier way to implement programming models than

languages

–! need old linker, not new compiler

!! Libraries can hide complexity of MPI (or other programming model

instantiation

!! Libraries can provide special-purpose programming models

–! still with applicability across applications

!! Library implementation would be the next step in applying new

programming approaches like PGAS or HPCS languages

–! will need to work with existing programming environment, other

compilers and languages

–! This would provide a migration path for applications

!!My current work is on the ADLB (Asynchronous, Dynamic Load-

Balancing) library

–! scalable implementation of the master/slave programming model

23

Argonne National
Laboratory

Master/Slave Algorithms and Load
Balancing

!! Advantages

–! Automatic load balancing

!! Disadvantages

–! Scalability - master can become bottleneck

!!Wrinkles

–! Slaves may create new work

–! Multiple work types and priorities that impose work flow

24

Master

Slave Slave Slave Slave Slave

Shared

Work queue

Argonne National
Laboratory

The ADLB Idea

!! No explicit master for load balancing; slaves make calls to ADLB

library; those subroutines access local and remote data structures

(remote ones via MPI).

!! Simple Put/Get interface from application code to distributed work

queue hides most MPI calls

–! Advantage: multiple applications may benefit

–! Wrinkle: variable-size work units, in Fortran, introduce some complexity

in memory management

!! Proactive load balancing in background

–! Advantage: application never delayed by search for work from other

slaves

–! Wrinkle: scalable work-stealing algorithms not obvious

25

Argonne National
Laboratory

The ADLB Model (no master)

!! Doesn’t really change algorithms in slaves

!! Not a new idea (e.g. Linda)

!! But need scalable, portable, distributed implementation of shared

work queue

–! MPI complexity hidden here.

26

Slave Slave Slave Slave Slave

Shared

Work queue

Argonne National
Laboratory

API for a Simple Programming Model

#! Basic calls

–! ADLB_Init(num_servers, am_server, app_comm)

–! ADLB_Server()

–! ADLB_Put(type, priority, len, buf, answer_dest)

–! ADLB_Reserve(req_types, handle, len, type, prio, answer_dest)

–! ADLB_Ireserve(…)

–! ADLB_Get_Reserved(handle, buffer)

–! ADLB_Set_Done()

–! ADLB_Finalize()

#! A few others, for tuning and debugging

–! ADLB_{Begin,End}_Batch_Put()

–! Getting performance statistics with ADLB_Get_info(key)

27

Argonne National
Laboratory

How It Works

!! Real numbers: 1000 servers out of 32,000 processors on BG/P

–! And recently introduced other communication paths
28

Application Processes

ADLB Servers

put/get

Argonne National
Laboratory

Progress with GFMC

128 512 2,048 8,192 32,768

60

70

80

90

100

Number of nodes (4 OpenMP cores per node)

E
ff

ic
ie

n
cy

 i
n

 %
Efficiency = compute_time/wall_time ! 25 Feb 2010

Feb 2009

Jun 2009

Oct 2009

12C ADLB+GFMC

29

Argonne National
Laboratory

Multiple Levels of Load Balancing

!!Original: balancing of processing load

!! Next: balancing of memory load

!! Finally: balancing of message-traffic load

!! Tools needed to understand ADLB and MPI library performance at

extreme scale

–! MPI-3 Forum addressing expanded tool interface

30

Argonne National
Laboratory

The Transition is Starting

#! In large-scale scientific computing today essentially all codes are

message-passing based. Additionally many are starting to use some

form of multithreading on SMP or multicore nodes.

#! Multicore is challenging programming models but there has not yet

emerged a dominant model to augment message passing

#! There is a need to identify new hierarchical programming models

that will be stable over long term and can support the concurrency

doubling pressure

#! Current approaches to programming GPU’s are for library

developers, not application developers

#! Libraries may be critical in easing transition to extreme scale

Argonne National
Laboratory 32

Summary

!!MPI is a successful current standard, but emerging architectures will

force us to look at new approaches

!!Most immediately needed: a shared-memory programming model

that interacts well with MPI

!! Needed next, an approach to programming heterogeneous multi-

core processors that is suitable for HPC computers and application

scientists

!! Programming models for exascale are still in experimental stages

!! Hiding MPI calls in higher-level, even application-specific libraries

can be a useful approach to programmer productivity

Argonne National
Laboratory 33

The End

